Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-103301.v1

ABSTRACT

Starting with a handful of SARS-CoV-2 infections in dormitory residents in late March 2020, rapid tranmission in their dense living environments ensued and by October 2020, more than 50,000 acute infections were identified across various dormitories. Extensive epidemiological, serological and phylogentic investigations, supported by simulation models, helped to reveal the factors of transmission and impact of control measures in a dormitory. We find that asymptomatic cases and symptomatic cases who did not seek medical attention were major drivers of the outbreak. Furthermore, each resident has about 30 close contacts and each infected resident spread to 4.4 (IQR 3.5–5.3) others at the start of the outbreak. The final attack rate of the current outbreak was 76.2% (IQR 70.6%–98.0%) and could be reduced by further 10% under a modified dormitory housing condition. These findings are important when designing living environments in a post COVID-19 future to reduce disease spread and facilitate rapid implementation of outbreak control measures.


Subject(s)
COVID-19 , Acute Disease , Severe Acute Respiratory Syndrome
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.13.20173807

ABSTRACT

Background Active cases of COVID-19 has primarily been diagnosed via RT-PCR of nasopharyngeal (NP) swabs. Saliva and self-administered nasal (SN) swabs can be collected safely without trained staff. We aimed to test the sensitivity of naso-oropharyngeal saliva and SN swabs compared to NP swabs in a large cohort of migrant workers in Singapore. Methods We recruited 200 male adult subjects: 45 with acute respiratory infection, 104 asymptomatic close contacts, and 51 confirmed COVID-19 cases. Each subject underwent NP swab, SN swab and saliva collection for RT-PCR testing at 1 to 3 timepoints. We additionally used a direct-from-sample amplicon-based next-generation sequencing (NGS) workflow to establish phylogeny. Results Of 200 subjects, 91 and 46 completed second and third rounds of testing, respectively. Of 337 sets of tests, there were 150 (44.5%) positive NP swabs, 127 (37.7%) positive SN swabs, and 209 (62.0%) positive saliva. Test concordance between different sample sites was good, with a kappa statistic of 0.616 for NP and SN swabs, and 0.537 for NP and saliva. In confirmed symptomatic COVID-19 subjects, the likelihood of a positive test from any sample fell beyond 14 days of symptom onset. NGS was conducted on 18 SN and saliva samples, with phylogenetic analyses demonstrating lineages for all samples tested were Clade O (GISAID nomenclature) and lineage B.6 (PANGOLIN nomenclature). Conclusion This study supports saliva as a sensitive and less intrusive sample for COVID-19 diagnosis and further delineates the role of oropharyngeal secretions in increasing the sensitivity of testing. However, SN swabs were inferior as an alternate sample type. Our study also provides evidence that a straightforward next-generation sequencing workflow can provide direct-from-sample phylogenetic analysis for public health decision-making.


Subject(s)
COVID-19 , Respiratory Tract Infections
SELECTION OF CITATIONS
SEARCH DETAIL